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Abstract. The phase diagram and mean local field theory for ensembles of dipolar interacting
ellipsoidal nanoparticles randomly distributed over the sites of a tetragonal lattice are constructed.
Dipolar ferromagnetism in the ensembles arises from a competition between the ferro- and
antiferromagnetic interactions of the nanoparticle magnetic moments. A critical temperature is
defined for these systems with magnitude depending on the shape of the nanoparticles.

1. Introduction

Recently there has been experimental evidence [1, 2] that in ensembles of magnetic
nanoparticles, randomly distributed in a nonmagnetic matrix, ferromagnetic ordering can
exist. There are numerical [3] and analytical [4, 5] results which show that such ordering
can be attributed to the dipolar interaction between the nanoparticles. Enhanced values of the
remanence and the coercivity of a random assembly of dipolar nanoparticles on a simple cubic
lattice with packing density close to percolation can be also attributed to the ferromagnetic
ordering of their magnetic moments [6]. For the interpretation of those experimental and
numerical data a theory of dipolar ferromagnetism is necessary. It must take into account
the finite size of the nanoparticles, the asphericity of their shape and the anisotropy of their
spatial distribution. But at present such a theory is absent. The goal of this paper is the
construction of that theory in the mean local field approximation. In the considered case dipolar
interaction of any nanoparticle pair has either ferromagnetic or antiferromagnetic character.
Therefore, existence or absence of dipolar ferromagnetism is determined by a competition of
ferromagnetic and antiferromagnetic interactions, which, in their turn, depend on the spatial
distribution of nanoparticles and their shape. Besides, similar to dipolar liquids [7], the result
of that competence can depend on the shape of the sample. But here in order to avoid the
demagnetizing fields, we consider the sample which is infinite in all directions.

2. Phase diagram

We consider an ensemble of uniaxial ferromagnetic nanoparticles the centres of which are
randomly distributed over the sites of a tetragonal lattice. It is supposed that (1) the lattice
constants in the xy-plane and along the tetragonal axis (the z-axis) are equal to d1 and d2,
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respectively; (2) each lattice site is occupied by a nanoparticle with a probability p; (3) the
nanoparticles have the shape of ellipsoids of revolution with semiaxes R (in the plane xy) and
R + δ (along the z-axis); (4) the axes of easy magnetization of the nanoparticles are parallel
to the z-axis, and the anisotropy field Ha essentially exceeds the mean local field acting on
each particle. In this case the mean local field has only a z-component. Placing the origin of
coordinates into the centre of any nanoparticle we can represent that component in the form

H =
〈 ∑

i

miz

V 2

∫
V

∫
3(riz + ρz − ρ ′

z)
2 − |ri + ρ − ρ′|2

|ri + ρ − ρ′|5 dρ dρ′
〉
. (1)

Here V = 4πR3(1 + ε)/3 is the nanoparticle volume, ε = δ/R, miz is the z-component
of the ith magnetic moment mi , ri (�= 0) is the radius vector of the ith nanoparticle centre,
the integration is carried out on the nanoparticle volume and the overbar and angular brackets
denote thermodynamic averaging and the average over distributions of the nanoparticles on the
sites of the lattice, respectively. Notice that the double integral represents the total interaction
energy of two nanoparticles of finite size.

For |ε| � 1 in equation (1) the double integral (divided by V 2) to first order in ε equals

3r2
iz − |ri |2
|ri |5

[
1 + ε

24R2

5|ri |2
]

(2)

therefore in this case the mean local field is reduced to

H = nmzξS(γ, ξ) (3)

where n = p/d2
1d2 is the packing density of nanoparticles, mz = 〈miz〉, ξ = d2/d1 is the

parameter characterizing the deviation from a cubic lattice (the case ξ = 1 corresponds to a
cubic lattice), γ = 24εR2/5d2

1 ,

S(γ, ξ) = S5/2(ξ) + γ S7/2(ξ)

Sr(ξ) =
∑

n1,n2,n3

2ξ 2n2
3 − n2

1 − n2
2

(n2
1 + n2

2 + ξ 2n2
3)

r
(4)

and n1, n2, n2 are integers that are not equal to zero simultaneously. Graphs of the functions,
S5/2(ξ), S7/2(ξ) and f (ξ) = −S5/2(ξ)/S7/2(ξ) are shown in figure 1. Notice that the numerical
series S5/2(ξ) does not converge absolutely; that is why its sum can depend on the method
of summation. Consequently, the thermodynamic properties of nanoparticle ensembles can
depend on their external shape [7–9]. Our calculations apply to the case when the infinite
sample arises from a cubical sample, the size of which tends to infinity.

According to equation (3) ferromagnetic ordering in an ensemble of magnetic moments
of ellipsoidal nanoparticles can occur if S(γ, ξ) > 0, that is γ > f (ξ) for 0 < ξ < 1 and
γ < f (ξ) for ξ > 1. The parameters γ and ξ are not fully independent since the conditions
d1 � 2R and d2 � 2R(1 +ε), providing the disjointness of nanoparticles, should be held. This
means that at fixed values of ε and ξ the parameter γ can be changed in the interval (0, ϕ(ε, ξ))
for ε > 0, and in the interval (ϕ(ε, ξ), 0) for ε < 0, where

ϕ(ε, ξ) =



6

5

ε

(1 + ε)2
ξ 2 (0 < ξ < 1 + ε)

6ε/5 (ξ � 1 + ε).
(5)

Taking into account the condition S(γ, ξ) > 0, it follows that in ensembles of prolate (ε > 0)
nanoparticles ferromagnetic ordering exists if the parameters γ and ξ belong to the region
defined by the conditions 0 < γ � ϕ(ε, ξ) and 0 < ξ < 1 (in figure 2 such a region
for ε = 0.2 is denoted by I). That region decreases with decreasing ε (in figure 2 for
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Figure 1. Dependence of the functions S5/2(ξ) (curve a),
S7/2(ξ) (curve b) and f (ξ) = −S5/2(ξ)/S7/2(ξ) (curve
c), defined by equation (4), on the parameter ξ .

Figure 2. Phase diagrams for ensembles of prolate
(ε = 0.2) and oblate (ε = −0.2) nanoparticles. In the
case of prolate nanoparticles dipolar ferromagnetism can
exist in region I, and in the case of oblate ones in region
II. Dotted curves restrict region I for ε = 1/6 and region
II for ε = −1/6.

ε = 1/6 region I is limited by the dotted curve), and in the limiting case of spherical (ε = 0)
nanoparticles the condition of ferromagnetic ordering is 0 < ξ < 1. Notice that the absence
of ferromagnetic ordering at ξ = 1 is in agreement with the known result of Luttinger and
Tisza [10] according to which the dipoles (magnetic or electric) on a simple cubic lattice are
ordered antiferromagnetically.

In the case of oblate (ε < 0) nanoparticles ferromagnetic ordering can formally exist in
two regions of the γ ξ -plane. The first region is defined by the conditions max(f (ξ), ϕ(ε, ξ)) <
γ < 0 and 0 < ξ < 1, and exists for any value of ε (in figure 2 such a region for ε = −0.2 and
ε = −1/6 is denoted by II). The second region is defined by the conditionsϕ(ε, ξ) � γ < f (ξ)

and ξ > 1, and appears only at ε < 5f (1)/6 ≈ −0.34. Since for the derivation of equation
(2) the condition |ε| � 1 was used, the question of whether dipolar ferromagnetism really
exists requires special consideration.

3. Phase transition

Within the local mean field approximation the stationary distribution function P(θ) for the
polar angle θ of a nanoparticle magnetic moment has the same form as for a separated particle
in an external magnetic field oriented along the easy axis [11]

P(θ) = sin θ exp(σ cos2 θ + 2σh cos θ)/Z(σ, 2σh) (6)

where σ = Ham/2kT , h = H/Ha , m is the module of nanoparticle magnetic moment, k is
the Boltzmann constant, T is the absolute temperature and

Z(σ, 2σh) =
∫ 1

−1
exp(σx2 + 2σhx) dx (7)

is the normalizing constant (partition function). Though the analytical expression for the
quantity Z is known [12, 13], for numerical calculations we will use equation (7). Defining
the order parameter of a nanoparticle system as µ = mz/m and using the relation

µ =
∫ π

0
cos θP (θ) dT (8)
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Figure 3. Temperature dependence of the order
parameter µ for ensembles of prolate (ε = 0.2, curve
1) and oblate (ε = −0.2, curve 2) Co nanoparticles.

on the basis of equations (3), (6)–(8) we obtain the following equation for µ

µ = 1

2σ

[
2eσ

Z(σ, 3T0µ/T )
sinh

(
3T0

T
µ

)
− 3T0

T
µ

]
(9)

(T0 = nm2ξS(γ, ξ)/3k). For S(γ, ξ) > 0 equation (9) has nonzero solution for µ (at
S(γ, ξ) < 0 it has only zero solution), i.e. in a nanoparticle system a spontaneous order
exists, if T < Tcr . The critical temperature T = Tcr of the phase transition is determined as a
solution of the equation

3T0

2σT

[
2eσ

Z(σ, 0)
− 1

]
= 1. (10)

Notice, since m �= 0 for T < TC (TC is the Curie temperature), the condition Tcr < TC must
hold. If in the temperature range (0, Tcr ) the dependence of m on T is weak, then equation
(10) has the solution Tcr = T0 for a|T=T0 � 1 (the case of weak anisotropy), and Tcr = 3T0

for a|T=3T0 
 1 (the case of strong anisotropy).
Dependences of the order parameter µ on T/TC for ensembles of prolate (ε = 0.2) and

oblate (ε = −0.2) Co nanoparticles characterized by the parameters [14], TC = 1400 K
Ms = 1400 emu cm−3 (Ms is the saturation magnetization of bulk Co), Ha = 7650 Oe (for
ε = 0.2), Ha = 4790 Oe (for ε = −0.2) (the values of the anisotropy field are different
because the shape anisotropy of the particles is taken into consideration), p = 1, ξ = 0.5
(S5/2(0.5) ≈ 23.64, S7/2(0.5) ≈ 126.28), d2 = 3R and R = 30 Å are shown in figure 3.
For these ensembles the spontaneous magnetization at T = 0 and the temperature of phase
transition in the ferromagnetic state equal 65 emu cm−3 and 952 K in the case of prolate
nanoparticles, and 43 emu cm−3 and 322 K in the case of oblate ones. The dependence of the
transition temperatureTcr on a nanoparticle shape is conditioned both by a shape anisotropy and
dipolar interaction. According to equations (4) and (10) dipolar interaction leads to increase
of Tcr for ensembles of prolate nanoparticles and to decrease of Tcr for ensembles of oblate
ones. Specifically, for the considered ensembles of Co nanoparticles the increase of Tcr is
equal to 98 K, and the decrease 42 K; the increase of dipolar field for prolate nanoparticles
and its decrease for oblate ones is approximately the same and is equal to 220 Oe.
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4. Conclusion

Magnetic properties of an ensemble of uniaxial ellipsoidal nanoparticles randomly distributed
on the sites of a tetragonal lattice are considered. The mean local field acting on a nanoparticle
from the other nanoparticles is found, the phase diagram for such ensembles is constructed
and the regions where the ferromagnetic ordering exists are defined. The equation for the
dipolar order parameter is derived and the temperature of paramagnetic–ferromagnetic phase
transition is calculated.
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